
Tuning the Parameters of a Convolutional
Artificial Neural Network by Using Covering

Arrays

Humberto Pérez-Espinosa1,2, Himer Avila-George1,2,
Josefina Rodriguez-Jacobo1, Hector A. Cruz-Mendoza1,

Juan Mart́ınez-Miranda1,2, Ismael Espinosa-Curiel1

1 CICESE-UT3, Tepic, Nay.,
Mexico

2 CONACYT - CICESE-UT3, Tepic, Nay.,
Mexico

hperez@cicese.mx, himerag@cicese.mx
http://idi.cicese.mx/ut3/

Abstract. Artificial Neural Networks have proven to be a very powerful
machine learning algorithm which can be adequate to learn successfully
a variety of tasks. Currently, very complex classification problems on
different kind of data (images, video, sound, text, DNA) have been
solved using neural networks. This kind of algorithms usually has many
parameters that need to be fine-tuned in order to have good results.
Usually, this tuning is made by trial and error. However, this procedure
does not guarantee the optimal performance of the training process. In
this work, we study the use of mixed-level covering arrays to design
experiments that help us to find the best combinations of parameters.
We tested this approach by tuning a convolutional neural network for
an audio classification task. For the implementation, we took advantage
of the flexibility of the open source software library for machine learning
TensorFlow.

Keywords: Artificial neural networks; covering arrays; artificial neural
networks tuning; ConvNet architectures.

1 Introduction

Currently, artificial neural networks are used for solving a variety of machine
learning tasks. The use of deep architectures has allowed going beyond the limits
reached with other architectures in certain tasks such as speech recognition and
image classification. This new revival of neural networks has even resulted in the
successful creation of mass consumption products and services with a very high
added value. For example, products for the classification of image, video, text,
written language, speech and audio. Services for product recommendation, rela-
tional data and social networks mining. Deep learning methods aim at learning

69

ISSN 1870-4069

Research in Computing Science 121 (2016)pp. 69–81; rec. 2016-05-18; acc. 2016-08-29

feature hierarchies. The features from higher levels of the hierarchy are formed by
the composition of lower lever features [4]. Despite the great potential of deep
neural networks, it is not easy to tune them. The problem of identifying the
parameters for a specific structure of a neural network is an important research
topic.

There have been several research efforts focused on the tuning of artificial
neural networks (ANN). Some researchers have applied genetic algorithms for
tuning the parameters of the network[3] and some others for tuning the param-
eters and also the structure of the network [13] [9]. Bashiri et al. [3] used central
composite to design experiments and also to analyze the behavior of the neural
network according to some identified parameters by using an overall desirability
function. The genetic algorithm was applied to find optimal parameter status.
They varied three parameters to evaluate the performance of the ANN: the
percentage of trained data, the number of neuron in the first layer and the
number of neuron in the second layer. Central composite was applied to extract
the relationship between responses and controllable factors. To validate the
proposed method, they compared their results versus the obtained applying the
Taguchi methodology. Taguchi methodology is considered an important tool for
robust design, i.e. for optimizing the product of process conditions which are
minimally sensitive to the various causes of variation. This methodology has
been used in several works for tuning ANN. In the work done by Tsai et al.
[13] the authors used a hybrid Taguchi-genetic algorithm to tune the network
structure and also the parameters of a feed-forward neural network. The numbers
of hidden nodes and the links are chosen by increasing them from small numbers
until the learning performance is good enough. A similar approach was proposed
by Leung et al. [9], the method tunes the structure and parameters of an ANN by
using an improved genetic algorithm. The neural network is able to learn both,
the input-output relationships of an application and the network structure using
the improved genetic algorithm. The authors propose the use of an ANN with
link switches and its particularity is a unit step function introduced to each link.
They observed that the weights of the links govern the input-output relationship
of the ANN, while the switches of the links govern its structure. Tortum et al. [12]
also applied the Taguchi method in the optimization of the design parameters
of an ANN.

Besides genetic algorithms, other evolutionary approaches have been tested
to solve the ANN tuning problem. Xiao et al. [14] applied a good point set-
evolutionary strategy for tuning both, the network structure and parameters of
a feed-forward neural network. The good point set is incorporated to enhance the
crossover operator of the evolutionary strategy. The numbers of hidden nodes
and the links of the feed-forward neural networks were chosen by increasing from
small number of both until the learning performance is good enough. Zhao et
al. [15] applied a cooperative binary-real particle swarm optimization to find
compact structures and optimal parameters of an ANN with link switches which
define the structure of the network. The works found in the literature have several
points in common:

70

Humberto Pérez-Espinosa, Himer Avila-George, Josefina Rodriguez-Jacobo, et al.

Research in Computing Science 121 (2016) ISSN 1870-4069

– The optimization of feed-forward neural networks [14], [15], [13], [9],
– The use of evolutionary strategies [14], [15], [13], [9], [3],
– The optimization of the number of hidden nodes and links [14], [15], [13],

[9],
– The structure of the ANN is chosen by increasing the number of nodes and

links until the learning performance is good enough [14], [15], [13], [9],
– The combination of an optimization technique with an experiment design

method [14], [13], [3], [12].

In recent years, some combinatorial objects called covering arrays (CAs)
have become very important in the design of experiments [7,8,10]. CAs are a
generalization of orthogonal arrays (OAs). In the 80s, G. Taguchi [11] promoted
the use of OAs as templates for developing experimental plans. The problem is
that not OAs exist for certain configurations of variables, levels, and interaction
degrees. Therefore, it is often difficult to choose a suitable OA to a specific
problem. A CA is a combinatorial object that does not need to be balanced (not
all t-tuples need to appear the same number of times) to open the possibility
of create CAs with different configurations of variables, levels, and interaction
degrees. A mixed-level covering array denoted by MCA(N ; t, k, (v1, . . . , vk)) is
a N × k matrix in which the entries of the ith column arise from an alphabet
of size vi; additionally, each column i(1 ≤ i ≤ k) contains only elements from a
set Si with |Si| = vi, and the rows of each N × t subarray cover all t-tuples of
values from the t columns at least once.

In this work, we propose the use of an experiment design method, based on
mixed-level covering arrays (MCA), for tuning parameters of a Convolutional
Neural Network (ConvNet). The characteristics of our approach, in contrast
with the related works found in the literature, are:

– Optimization of a deep architecture neural network (ConvNet),
– The use of an experimental design instead of evolutionary strategies,
– The tuning of a relatively large number of parameters, some for tuning neural

networks in general and some for tuning ConvNet architectures in particular,
– The structure of the ANN (number and type of layers) is fixed. We only

change the parametrization,
– We do not apply any optimization technique.

The experiments presented in this work are based on two research questions:

1. Are mixed-level covering arrays a good option to fine tune the performance
of an ANN?

2. How much significant is the improvement obtained using this approach?

2 Methodology

In order to answer the research questions posed in the previous section, we con-
ducted an experiment in which we implemented a convolutional neural network

71

Tuning the Parameters of a Convolutional Artificial Neural Network by Using Covering Arrays

Research in Computing Science 121 (2016)ISSN 1870-4069

using an open source tool. We identified the set of parameters that need to be
tuned and determined their possible range of values. Using MCA, we obtained
a list of parameter combinations to test. We run the testing cases on an audio
classification task. In the following subsections, we explain the details of the
proposed method.

2.1 TensorFlow

For the implementation of the convolutional neural network, we used the software
TensorFlow [1]. It was originally developed by researchers and engineers from
the Google’s Brain Team with the objective of conducting machine learning
and deep neural networks research. This software is currently used for both,
research and production by different teams in several of the commercial Google
products, such as speech recognition, Gmail, Google Photos, and Search. An
important characteristic of this tool is its flexible architecture which allows
deploying computation to one or more CPUs or GPUs in a desktop, server,
or mobile device using the same API. Google released TensorFlow under the
Apache 2.0 open source license in November 2015.

2.2 ConvNets

ConvNets are a type of neural networks inspired by the visual system’s structure.
In these networks, the weights are shared across time or space. Neurons with the
same weights are applied on input patches of the previous layer at different seg-
ments of the input data. In this way, it is obtained a translational invariance that
allows the networks learning patterns and reuse them on different space or time
context. Therefore, ConvNets are useful when the inputs samples are statistical
invariants, that is, the input samples contain the same kind of information and
it does not change on average across time or space. In a ConvNet, instead of
having stacks of matrix multiply layers, there are stacks of convolutions. When
the size of the patch is the same size than the whole feature vector, it is just
a regular layer of a neural network. But when the patch is smaller than the
whole feature vector, there are fewer weights and they are shared along the
sequence of input features. Currently, pattern recognition systems based on
convolutional networks are among the best performing systems. This type of
network architecture typically have five, six or seven layers, a number of layers
which makes fully connected neural networks almost impossible to train properly
when initialized randomly [4].

2.3 ConvNet Structure

ConvNets are usually structured by stacking up convolution layers. At the top
of the structure, there are fully connected layers. And finally, there is a classifier.
Stride is the number of features that are shifted each time the filter moves. The
strides between layers are used to reduce the dimensionality and to increase the

72

Humberto Pérez-Espinosa, Himer Avila-George, Josefina Rodriguez-Jacobo, et al.

Research in Computing Science 121 (2016) ISSN 1870-4069

depth of the neural network. A stride of one makes the output the same size as
the input. A stride of 2 means that output is half the size as the input. Each layer
in the structure is called a feature map. There could be more than one feature
map, for instance, if an image has the channels R,G, and B, these three channels
(K-size = 3) can be handled as individual features maps. In our particular case,
we are handling only one channel because the audio recording are mono-channel.
When the shifting filter does not go beyond the edge of the feature vector, it
is called valid padding. If the filter goes off the edge of the feature vector and
therefore the output map size is exactly the same size than the input map, it is
called same padding.

One possible improvement to this configuration of a ConvNet is to reduce the
extent of the feature maps in the convolutional stack. Striding to shift the filters
by a few features each time removes important information and produce less
accurate models. The pooling layers take all the convolutions in a neighborhood
and combine them instead of skipping one in every two convolutions. Max
pooling take a small neighborhood around every point in the feature map and
compute the maximum of all the responses around it. Given that the convolutions
are done on lower stride, the structure becomes more expensive to compute and
there are more parameters to tune. Average pooling instead of taking the max,
just take an average over the window of features around a specific location.

For our implementation, we are using a typical architecture for ConvNet.
It has two alternated layers of convolution and pooling, followed by a fully
connected layer and a classification layer at the end. The Fig. 1 shows the network
structure.

Fig. 1: Convolutional neural network architecture used for the experiments
presented in this paper. The different options that we tested at each layer are
shown in parentheses.

2.4 ConvNet Parametrization

We identified three types of parameters. General: that are common in the train-
ing of any artificial neural network (e.g., number of epochs, learning rate).

73

Tuning the Parameters of a Convolutional Artificial Neural Network by Using Covering Arrays

Research in Computing Science 121 (2016)ISSN 1870-4069

Convolutional: that are particular parameters of a basic ConvNet (e.g., the
stride to slide the filter, type of padding). Improvement: that are parameters of
operations used to improve the performance of a ConvNet (e.g., pooling region
size, pooling stride).

General:

v1 - Num epochs: a positive integer that limits the number of steps that
validation set is evaluated.

v2 - Learning rate: a float that represents the magnitude of the update
per each training step. Decay once per epoch.

v3 - Batch size: a positive integer that indicates the percentage of the
training data that are feed in each iteration.

v4 - Eval batch size: a positive integer that indicates the percentage of
the validation data that is feed in each iteration.

v5 - Loss: Operation to measure the error of a network. The possible
values for the parameter are reduce max and reduce min.

v6 - Optimizer: functions to compute gradients for a loss measure and
apply gradients to variables. The four possible values of this parame-
ter are MomentumOptimizer, GradientDescentOptimizer, AdamOpti-
mizer and RMSPropOptimizer.

v7 - Activation: functions that provide nonlinearities. This parameter
takes three possible values. One function for smooth nonlinearities
(elu) and two continuous but not everywhere differentiable functions
(relu, relu6).

v8 - Classification: operations to perform classification. In our case, soft-
max activations.

Convolutional:

v9 - K-size an integer that represents the size of the dimension of the input.
v10 - Strides a list of integers that represents the number of features that

are shifted by the sliding window for each dimension of the input vector
each time the filter moves.

v11 - Convolution functions to sweep a filter over a batch of input data,
applying the filter to each window of each input vector of the appro-
priate size. This parameter takes three possible values conv2d, depth-
wise conv2d and separable conv2d.

v12 - Padding If the filter goes off the edge of the feature map or not. The
two possible values for this parameter are same and valid.

v13 - Patch size a positive integer that indicates the size of the window that
slides across the feature vector. It could be also bidimensional, in our
case it is unidimensional.

v14 - Depth1 a positive integer that represents the depth of the first convo-
lution layer.

74

Humberto Pérez-Espinosa, Himer Avila-George, Josefina Rodriguez-Jacobo, et al.

Research in Computing Science 121 (2016) ISSN 1870-4069

v15 - Depth2 a positive integer that represents the depth of the second
convolution layer.

Improvement:

v16 - Pool function to reduce the extent of the feature maps sweeping a
rectangular window over the input. The two possible values for this
parameters are max pool and avg pool.

In Table 1??, the sixteen main variables and their levels/values are shown.

2.5 Criteria to Evaluate the ConvNet Parametrization

The criteria that we used to select the best parametrization of the ConvNet
was a measurement of the classification performance. The results tables show
the performance of the classification experiments in terms of precision, recall
and F-measure. The F-measure is a classification performance metric that is
calculated as the harmonic mean of precision and recall. The F-measure score
reaches its best value at 1 when precision and recall are 1, and worst at 0
when precision or recall is 0. This is, the closest to 1, the most accurate is the
classification. To measure the performance we use three data subsets: training,
validation, and testing. The results showed in the tables are the ones obtained
with the test set.

2.6 Design of Experiments based on MCA

The methodology for setting the values of the parameters of an ANN is based
on the study of the effect on the quality of the solution, which is caused by the
interaction between the variables of the experiment. The tuning process of the
parameters of the ANN was done using an MCA(49; 2, 7451433423), this MCA
represents the experimental plan. The MCA was constructed using the simulated
annealing algorithm reported in [2]. The experimental plan is composed of fifty-
two experiments, see Table 1??. In the construction of the experimental design,
only fifteen parameters were used, because the parameter Classification only has
one level.

2.7 Used Data

To find out which is the best configuration of the ConvNet, we used data from
a dog barks database created by the Haramara TIC Lab at CICESE-UT3 in
Nayarit, Mexico. The recorded barks of this database were induced applying
four stimuli, three of them were related to negative emotions (aggression to
unfamiliar people), and the fourth with a positive emotion (playfulness). The
dogs were recorded in their habitual environment.

Aggression to unfamiliar people:
We divided this procedure into three parts:

75

Tuning the Parameters of a Convolutional Artificial Neural Network by Using Covering Arrays

Research in Computing Science 121 (2016)ISSN 1870-4069

Table 1: The design of experiment based on a MCA. ?? Variables and their
levels. ?? The experimental plan.

(a)

V
a
ri

a
b
le

s

L
e
v
e
ls

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
1
0

v
1
1

v
1
2

v
1
3

v
1
4

v
1
5

v
1
6

0
2
0

0
.0

0
0
1

8
8

tf
.r

ed
u

ce
m

a
x

M
o
m

en
tu

m
re

lu
so

ft
m

a
x

1
1

tf
.n

n
sa

m
e

3
8

3
2

m
a
x

1
3
0

0
.0

0
0
6

2
0

2
0

tf
.r

ed
u

ce
m

ea
n

G
ra

d
ie

n
tD

es
ce

n
t

re
lu

6
2

2
tf

.n
n

.d
ep

th
w

is
e

va
li

d
4

1
6

6
4

av
g

2
4
0

0
.0

0
1
1

3
2

3
2

A
d

a
m

el
u

3
3

tf
.n

n
.s

ep
a
ra

b
le

5
3
2

9
6

3
5
0

0
.0

0
1
6

4
4

4
4

R
M

S
P

ro
p

6
6
4

1
2
8

4
6
0

0
.0

0
2
0

5
6

5
6

7
5

7
0

0
.0

0
2
5

6
8

6
8

6
8
0

0
.0

0
3
0

8
0

8
0

(b)

Variables
Experiment #

v1 v2 v3 v4 v5 v6 v7 v9 v10 v11 v12 v13 v14 v15 v16

exp01 3 3 3 5 0 0 1 0 1 1 0 1 1 0 1
exp02 1 1 1 0 0 1 1 1 1 0 0 1 1 3 1
exp03 1 1 1 5 0 2 0 0 2 1 0 3 1 1 1
exp04 2 2 2 4 1 0 0 2 0 0 1 1 0 1 0
exp05 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0
exp06 0 0 0 5 0 1 2 0 2 2 1 4 1 1 1
exp07 4 4 4 6 0 2 0 2 0 1 0 1 0 3 0
exp08 1 1 1 4 1 0 1 1 1 0 1 2 3 2 1
exp09 2 2 2 0 1 3 2 2 2 0 1 0 0 3 0
exp10 4 4 4 3 0 0 0 0 0 0 0 4 1 2 1
exp11 4 4 4 1 0 1 1 1 1 1 0 1 2 1 0
exp12 5 5 5 3 1 3 2 2 2 2 1 1 3 0 1
exp13 5 5 5 5 0 3 0 1 1 0 0 0 3 3 0
exp14 2 2 2 6 1 3 1 2 0 2 1 4 2 1 1
exp15 0 0 0 2 1 3 2 2 1 2 0 3 0 2 1
exp16 4 4 4 2 0 3 0 2 0 2 1 0 1 0 0
exp17 2 2 2 3 0 0 1 1 1 0 0 3 0 0 0
exp18 0 0 0 3 1 1 2 0 2 1 1 2 2 3 1
exp19 6 6 6 4 0 2 0 0 0 0 0 4 2 2 1
exp20 4 4 4 0 1 3 1 1 1 2 1 4 3 3 0
exp21 5 5 5 6 0 1 2 2 2 2 1 2 0 2 0
exp22 0 0 0 4 1 0 0 0 0 0 0 1 1 2 1
exp23 3 3 3 2 0 2 1 1 1 1 0 4 0 2 0
exp24 1 1 1 2 1 2 2 2 2 2 1 1 3 0 1
exp25 6 6 6 2 0 2 0 0 0 0 0 1 2 0 0
exp26 1 1 1 5 1 1 1 1 1 1 1 2 0 0 1
exp27 5 5 5 1 0 2 2 2 2 2 0 4 0 3 0
exp28 1 1 1 6 1 3 2 0 1 0 1 0 0 1 1
exp29 0 0 0 6 0 0 1 1 0 2 1 4 1 0 0
exp30 6 6 6 3 1 0 2 2 2 1 0 1 1 3 1
exp31 1 1 1 3 0 2 0 2 0 2 0 0 2 2 0
exp32 6 6 6 1 1 3 1 2 1 1 1 2 1 3 1
exp33 4 4 4 4 0 3 2 1 2 1 0 3 0 0 1
exp34 6 6 6 6 1 1 0 0 0 1 1 3 3 1 0
exp35 2 2 2 1 0 2 1 1 2 1 0 0 3 2 0
exp36 5 5 5 4 1 0 2 0 1 2 1 3 2 3 1
exp37 1 1 1 1 0 1 0 0 2 0 0 4 3 0 0
exp38 6 6 6 1 1 1 1 0 0 1 1 3 2 1 1
exp39 3 3 3 6 1 3 2 2 0 0 1 3 1 2 0
exp40 3 3 3 4 0 1 0 0 1 0 0 0 3 1 1
exp41 5 5 5 0 0 2 1 1 0 1 0 3 0 0 0
exp42 6 6 6 5 1 0 2 2 1 2 1 0 1 2 1
exp43 3 3 3 0 1 2 0 2 0 1 1 2 2 2 1
exp44 0 0 0 0 0 2 1 0 1 0 0 0 3 1 0
exp45 6 6 6 0 0 0 2 1 2 2 1 3 0 0 1
exp46 3 3 3 1 1 0 0 0 2 1 0 1 3 3 0
exp47 2 2 2 5 0 1 1 1 0 0 0 2 1 2 0
exp48 5 5 5 2 1 1 2 2 2 0 1 2 1 1 1
exp49 3 3 3 3 0 3 0 0 0 2 0 3 2 1 0
exp50 4 4 4 5 1 1 0 1 0 1 1 2 2 1 1
exp51 1 1 1 0 0 2 2 2 2 2 0 4 2 2 0
exp52 2 2 2 2 1 0 0 0 0 0 1 1 2 3 1

– Aggr1: The dog started barking when it realized the presence of a stranger
at the door. After the door was open, the experimenter stimulated aggressive
barks by doing some threatening movements in front of the dog and kept
recording until the dog stop barking.

– Aggr2: The experimenter moved away from the owner house for ten minutes
and then returned. The experimenter pretended to be a thief, hit the door
and tried to force it to open. In this case, the barks were more intense.

– Aggr3: Again the experimenter moved away from the owner house and then

76

Humberto Pérez-Espinosa, Himer Avila-George, Josefina Rodriguez-Jacobo, et al.

Research in Computing Science 121 (2016) ISSN 1870-4069

returned and he looked out through the window or above the wall of the
house.

Playfulness:
The experimenter asked the owner to play with the dog using a toy or its

favorite object. The experimenter, then, recorded the interaction between the
owner and the dog.

From these inductions we obtained four categories of barks that we will try
to classify using a neural network:

– Aggressive-bark: bark occurred due to the presence of a stranger.
– Very-Aggressive-bark: bark occurred due to the presence of a stranger

and imminent threat.
– Play-bark: bark occurred while the dog is playing.
– Other-bark: bark that was not produced by some of the planned stimuli.

2.8 Audio Characterization

We characterized acoustically the audio data from this database using the soft-
ware openSMILE [5]. This software allowed us to extract the following Low-Level
Descriptors (LLDs): Melspec, MFCC, Energy, Spectral Bands, Spectral Roll Off,
Spectral flux, Spectral centroid, Spectral MaxPos, Spectral MinPos, Voice prob,
F0Env, F0 envelope, F0 and zero crossing rate. We computed these acoustic
features using a frame size of 25 ms and a frame step of 10 ms. We applied a
moving average filter for smoothing data contours. We calculated the delta and
double delta regression coefficients for the values of LLDS in each frame. We
calculated 39 statistical functions over the values of the LLDs, its deltas, and its
double deltas coefficients in each frame of the sample.

We obtained a total of 6,552 attributes for each single audio sample. After an
experimentation stage we decided to use the Relief Attribute evaluation method
as implemented in Weka [6]. The method showed the best accuracy rates when
we took the 350 best-ranked attributes. We selected these features from the
original feature set of 6,552 attributes to obtain the best attributes and reduce
the dimensionality of the attributes vector.

3 Results

For the experiment implementation, we used the TensorFlow framework installed
in a Linux server called Harvest. Harvest is part of the computing infrastruc-
ture of the Center for Scientific Research and Higher Education at Ensenada,
Technology Transfer Unit at Tepic (CICESE-UT3). Harvest is equipped with
72 Intel Xeon processors, 64GB RAM, and a Tesla K20 GPU accelerator. The
Linux distribution for this server is CentOS.

Fifty-two experiments were run (see Table 2). We observed a diversity of
classification performances. From very bad results (F-Measure below 0.30) to

77

Tuning the Parameters of a Convolutional Artificial Neural Network by Using Covering Arrays

Research in Computing Science 121 (2016)ISSN 1870-4069

very good results (F-Measure above 0.90). We identified some parameters that
have a more evident effect on the results, for example, learning rate, convolution,
and batch size. Other parameters do not have an evident effect on the results, for
example, patch size, depth, and activation. We found that the best configuration
is exp39, this experiment reaches a F-Measure = 0.94.

Three combinations were not possible because when the convolution is a
depth wise the variable depth must be the divisor of num hidden. And when the
convolution is separable the variable depth must be less than num hidden. Those
three cases did not satisfy this condition (exp12, exp24 and exp35).

Table 2: Experimental design results.
Results

Experiment #
Precision Recall F-Measure

exp01 0.32 0.57 0.41
exp02 0.62 0.63 0.59
exp03 0.55 0.58 0.55
exp04 0.78 0.76 0.73
exp05 0.32 0.57 0.41
exp06 0.45 0.56 0.45
exp07 0.00 0.06 0.01
exp08 0.73 0.72 0.70
exp09 0.90 0.90 0.90
exp10 0.79 0.79 0.79
exp11 0.47 0.52 0.49
exp12
exp13 0.71 0.61 0.61
exp14 0.32 0.57 0.41
exp15 0.00 0.05 0.00
exp16 0.59 0.32 0.16
exp17 0.57 0.58 0.56
exp18 0.32 0.57 0.41
exp19 0.74 0.70 0.70
exp20 0.32 0.57 0.41
exp21 0.32 0.57 0.41
exp22 0.32 0.57 0.41
exp23 0.16 0.05 0.01
exp24
exp25 0.92 0.92 0.92
exp26 0.32 0.57 0.41
exp27 0.10 0.32 0.16
exp28 0.88 0.88 0.87
exp29 0.10 0.32 0.16
exp30 0.32 0.57 0.41
exp31 0.10 0.32 0.16
exp32 0.32 0.57 0.41
exp33 0.44 0.57 0.41
exp34 0.32 0.57 0.41
exp35
exp36 0.32 0.57 0.41
exp37 0.59 0.58 0.58
exp38 0.32 0.57 0.41
exp39 0.94 0.94 0.94
exp40 0.67 0.67 0.67
exp41 0.40 0.41 0.37
exp42 0.32 0.57 0.41
exp43 0.34 0.56 0.43
exp44 0.74 0.54 0.50
exp45 0.32 0.57 0.41
exp46 0.32 0.57 0.41
exp47 0.60 0.60 0.60
exp48 0.32 0.57 0.41
exp49 0.32 0.57 0.41
exp50 0.32 0.57 0.41
exp51 0.00 0.06 0.01
exp52 0.86 0.86 0.86

78

Humberto Pérez-Espinosa, Himer Avila-George, Josefina Rodriguez-Jacobo, et al.

Research in Computing Science 121 (2016) ISSN 1870-4069

The Table 3 shows the classification performance metrics of the best parame-
ters combination obtained by the MCA. This result is compared with the classi-
fication results obtained with some widely used machine learning algorithms. We
used the software Weka [6] to run the training algorithms. We used the default
parametrization of this tool for all the algorithms. The evaluation was done
using the same data subsets for all the classifiers. The samples were randomly
distributed in the three subsets, 2,246 samples in the testing set, 642 in the
validation set and 321 samples in the test set. Features vectors consist of 350
acoustic features.

We observed a marked difference in the classification performance between
the ConvNet with tuned parametrization and the rest of classifiers. This com-
parison shows that by applying the proposed method for parametrization of
ConvNets, we can obtain very accurate classification models. Random Forest
and Support Vector Machines showed good results (F-Measure = 0.79 and 0.78
respectively) but there is a significant difference in the results showed by the
ConvNet (0.94). Eight of the configurations obtained an F-Measure above the
results obtained with Random Forest and Support Vector Machines.

Table 3: Comparison between the best result of the experiment and other
classifiers.

Classifier Precision Recall F-measure

Tuned ConvNet 0.94 0.94 0.94
Naive Bayes 0.70 0.67 0.68

Support Vector Machines 0.78 0.79 0.78
C4.5 0.69 0.69 0.69

Random Forest 0.79 0.79 0.78

4 Conclusions and Future Work

In this work, we applied MCA to design an experiment with the objective of
finding good combinations of parameters for a ConvNet. We found out that
running the experiments resulted in a variation of classification performance from
very bad to very good. Given the best classification result from the experiment,
we can conclude that this method for tuning the parameters of a ConvNet is a
good option. We compared the best result obtained with the proposed method
against the results obtained with other classifiers. We observed a significant
improvement in relation with the other classifiers.

The results obtained in this work are very encouraging to keep exploring the
use of MCA for tuning deep ANN architectures. As future work, we are planning
to do a more exhaustive and formal evaluation of the classification performance
and benefits of the proposed method. In that evaluation, we plan to test the
following aspects:

79

Tuning the Parameters of a Convolutional Artificial Neural Network by Using Covering Arrays

Research in Computing Science 121 (2016)ISSN 1870-4069

– Testing of other audio, image and text databases.
– Testing with regression tasks.
– Testing of other deep structure variants such as auto-encoders, inceptions,

and long short-term memory.
– Comparison with other ANN fine-tuning methods.
– Tuning of the structure of the deep architecture number, type and order of

the layers stack.

Acknowledgements. This research work has been carried out in the context
of the “Cátedras CONACyT” programme funded by the Mexican National
Research Council.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org 1 (2015)

2. Avila-George, H., Torres-Jimenez, J., Gonzalez-Hernandez, L., Hernández, V.:
Metaheuristic approach for constructing functional test-suites. IET Software 7(2),
104–117 (2013)

3. Bashiri, M., Geranmayeh, A.F.: Tuning the parameters of an artificial neural
network using central composite design and genetic algorithm. Scientia Iranica
18(6), 1600–1608 (2011)

4. Bengio, Y.: Learning deep architectures for ai. Foundations and trends R© in
Machine Learning 2(1), 1–127 (2009)

5. Eyben, F., Wöllmer, M., Schuller, B.: Opensmile: the munich versatile and fast
open-source audio feature extractor. In: Proceedings of the international conference
on Multimedia. pp. 1459–1462. ACM (2010)

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

7. Kacker, R.N., Kuhn, D.R., Lei, Y., Lawrence, J.F.: Combinatorial testing for
software: An adaptation of design of experiments. Measurement 46(9), 3745 – 3752
(2013)

8. Kuhn, D.R., Kacker, R.N., Lei, Y.: Measuring and specifying combinatorial cover-
age of test input configurations. Innovations in Systems and Software Engineering
pp. 1–13 (2015)

9. Leung, F.H., Lam, H.K., Ling, S.H., Tam, P.K.: Tuning of the structure and
parameters of a neural network using an improved genetic algorithm. Neural
Networks, IEEE Transactions on 14(1), 79–88 (2003)

10. Proust, M.: Design of Experiments Guide, Version 12. JMP, A Business Unit of
SAS, SAS Campus Drive, Cary, NC27513 (2015)

11. Taguchi, G.: Introduction to quality engineering: designing quality into products
and processes. ARRB Group (1986)

12. Tortum, A., Yayla, N., Çelik, C., Gökdağ, M.: The investigation of model selection
criteria in artificial neural networks by the taguchi method. Physica A: Statistical
Mechanics and its Applications 386(1), 446–468 (2007)

80

Humberto Pérez-Espinosa, Himer Avila-George, Josefina Rodriguez-Jacobo, et al.

Research in Computing Science 121 (2016) ISSN 1870-4069

13. Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the structure and parameters of a
neural network by using hybrid taguchi-genetic algorithm. Neural Networks, IEEE
Transactions on 17(1), 69–80 (2006)

14. Xiao, C., Cai, Z., Wang, Y., Liu, X.: Tuning of the structure and parameters of a
neural network using a good points set evolutionary strategy. In: Young Computer
Scientists, 2008. ICYCS 2008. The 9th International Conference for. pp. 1749–1754.
IEEE (2008)

15. Zhao, L., Qian, F.: Tuning the structure and parameters of a neural network
using cooperative binary-real particle swarm optimization. Expert Systems with
Applications 38(5), 4972–4977 (2011)

81

Tuning the Parameters of a Convolutional Artificial Neural Network by Using Covering Arrays

Research in Computing Science 121 (2016)ISSN 1870-4069

	Tuning the Parameters of a Convolutional Artificial Neural Network by Using Covering Arrays
	Introduction
	Methodology
	TensorFlow
	ConvNets
	ConvNet Structure
	ConvNet Parametrization
	Criteria to Evaluate the ConvNet Parametrization
	Design of Experiments based on MCA
	Used Data
	Audio Characterization

	Results
	Conclusions and Future Work

